GCE

Chemistry A

H032/02: Depth in chemistry

Advanced Subsidiary GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations

Annotation	Meaning
C	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording carried forward
AW	Or reverse argument
ORA	

Question			Answer	Marks	AO element	Guidance
1	(a)	(i)	(Electrostatic) attraction between oppositely charged ions \checkmark	1	A01.1	IGNORE force IGNORE references to transfer of electrons
		(ii)	Dot and cross $2 \times \mathrm{K}$ shown with either 8 or 0 electrons AND S shown with 8 electrons with 2 crosses and 6 dots (or vice versa) Charges Correct charges on K^{+}AND S^{2-} ions \checkmark	2	$\begin{gathered} \mathrm{AO} 2.5 \\ \times 2 \end{gathered}$	ALLOW separate K^{+}ions, i.e. If 8 electrons are shown around K, 'extra electrons' around S must match symbol chosen for electrons around K, e.g. Shell circles NOT needed IGNORE inner shell electrons

Question		Answer	Marks	AO element	Guidance
(b)		Bonded pairs Electron pairs in covalent bonds shown correctly using dots and crosses in SF_{2} molecule Lone pairs Lone pairs correct on S and 2 F atoms \checkmark	2	$\begin{gathered} \mathrm{AO} 2.5 \\ \times 2 \end{gathered}$	Shell circles NOT needed IGNORE inner shells ALLOW Non-bonding electrons shown as unpaired
(c)		$\mathrm{K}_{2} \mathrm{~S}$: ionic bonds are strong OR has a giant ionic lattice SF_{2} : London forces/ dipole-dipole forces are weak \checkmark between molecules \checkmark	3	$\begin{gathered} \mathrm{AO} 1.1 \\ \times 2 \end{gathered}$	ALLOW induced OR permanent dipole interactions ALLOW intermolecular forces are weak for 2 marks for SF_{2} IGNORE van der Waals forces, vdW
(d)	(i)	$\begin{aligned} & \text { Octahedral } \checkmark \\ & 90^{\circ} \checkmark \end{aligned}$	2	$\begin{gathered} \mathrm{AO} 1.1 \\ \times 2 \end{gathered}$	
	(ii)	SF_{6} has no overall dipole OR is non polar OR S-F bonds are strong OR SF_{6} has no lone pairs \checkmark	1	AO2.1	
		Total	11		

Question		Answer	Marks	AO element	Guidance
2	(a)	A species with an unpaired electron \checkmark	1	A01.1	DO NOT ALLOW: species with one electron
	(b)	Homolytic (fission) \checkmark	1	A01.1	
	(c)		2	$\begin{gathered} \mathrm{AO} 2.5 \\ \times 2 \end{gathered}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	(d)	Structure of organic product Complete balanced equation \checkmark	2	$\begin{aligned} & \mathrm{AO} 2.5 \\ & \mathrm{AO} 2.6 \end{aligned}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous, e.g.
		Total	6		

Question			Answer	Marks	AO element	Guidance
3	(a)		From colourless to pink \checkmark	1	AO2.3	
	(b)	(i)	Titre: 18.50, 18.05, 18.20, $18.30 \checkmark$ All titres with 2 DP and ending with ' 0 ' OR ' 5 '	1	AO2.4	DO NOT ALLOW responses given to only 1 decimal place
		(ii)	To estimate the titre \checkmark	1	AO2.3	ALLOW 'getting a rough idea of the titre' (or similar wording)
		(iii)	$18.25 \mathrm{~cm}^{3} \checkmark$	1	AO2.4	
		(iv)	$\% \text { uncertainty }=\frac{0.1}{18.05} \times 100=0.55 \% \checkmark$	1	AO2.4	ALLOW ECF from incorrect subtraction in (b)(i) or incorrect mean ALLOW calculation from other titre values
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=3$ AND $M=132(, 0) \ldots$ award 5 marks $\begin{aligned} & n(\mathrm{NaOH})=\frac{18.25 \times 0.240}{1000}=4.38 \times 10^{-3} \checkmark \\ & n\left(\text { acid } \text { in } 25 \mathrm{~cm}^{3}=\frac{4.38 \times 10^{-3}}{2}=2.19 \times 10^{-3}(\mathrm{~mol}) \checkmark\right. \\ & n(\text { (acid }) \text { in } 250 \mathrm{~cm}^{3}=2.19 \times 10^{-2}(\mathrm{~mol}) \checkmark \\ & M(\text { acid }) \\ & \quad=\frac{2.891}{2.19 \times 10^{-2}}=132(.0) \ldots \ldots\left(\mathrm{g} \mathrm{~mol}^{-1}\right)^{\checkmark} \\ & M\left(\mathrm{CH}_{2}\right)_{n} \\ & =132-90 \text { OR }(132.0 \ldots-90) \text { OR } 42 \\ & \begin{array}{l} (\text { seen anywhere }) \\ \text { AND } n=\frac{42}{14}=3 \checkmark \end{array} \quad \text { whole number required } \end{aligned}$	5	AO2.8 $\times 4$ AO3.2	ALLOW ECF throughout ALLOW ECF from (b)(iii) Answers should be to at least 3 significant figures for first 4 marks.

| (d) | The titre would be less \checkmark
 Glutaric acid would be less concentrated/more dilute \checkmark | $\mathbf{2}$ | AO3.3
 $\times 2$ | | |
| :--- | :--- | :--- | :--- | :---: | :---: | :--- |
| | | Total | $\mathbf{1 2}$ | | |

Question		Answer	Marks	AO element	Guidance
4	$\underset{*}{\text { (a) }}$	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Calculates CORRECT enthalpy change with correct signs for ΔH_{2} for reaction 2 AND ΔH_{1} for reaction 1. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculates a value of ΔH_{2} for reaction 2 from the: Energy change AND Amount in mol of MgCO_{3}. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Processes experimental data to obtain the Energy change from $m c \Delta T$ OR Amount in moles of MgCO_{3} There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} \hline \mathrm{AO} 3.1 \\ \times 4 \\ \\ \mathrm{AO} 3.2 \\ \times 2 \end{gathered}$	Indicative scientific points may include: 1. Processing experimental data Energy change from $m c \Delta T$ - Energy in J OR kJ Using 103.01 g or 100.0 g $=103.01 \times 4.18 \times 5.0$ $=2152.909(\mathrm{~J})$ OR $2.153(\mathrm{~kJ})$ 3SF or more (2.152909 unrounded) OR $100.0 \times 4.18 \times 5.0$ $=2090(\mathrm{~J}) \text { OR } 2.09(\mathrm{~kJ})$ Amount in mol of MgCO_{3} $n\left(\mathrm{MgCO}_{3}\right)=\frac{4.215}{84.3}=0.0500(\mathrm{~mol})$ 2. \pm value of ΔH_{2} for reaction 2 From $m=103.01 \mathrm{~g}= \pm \frac{2.153}{0.0500}= \pm 43.06\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (-43.05818 unrounded) $\text { From } m=100.0 \mathrm{~g} \quad= \pm \frac{2.19}{0.0500}= \pm 41.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3. CORRECT enthalpy changes for Reaction 1 and Reaction 2 with signs (using 103.01 g ONLY) Reaction $2=-43.06\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3SF or more with correct - sign Reaction 1 $\Delta H_{1}=\Delta H_{2}-\Delta H_{3}$ $=-43.06-(-136.1)=+93.04\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3SF or more with correct - sign ALLOW omission of trailing zeroes, e.g. 93 for 93.0 NOTE: If 100 g used, ΔH is incorrect and L3 cannot be attained
		Total	6		

Question		Answer	Marks	AO element	Guidance
(e)		Element A is silicon/Si AND A large increase between the $4^{\text {rd }}$ and $5^{\text {th }}$ IE $5^{\text {th }}$ electron is removed from shell closer to the nucleus OR there are 4 electrons in the outer shell \checkmark	2	AO3.1 AO3. 2	ALLOW an indication of a different shell (from removal of $5^{\text {th }}$ electron)
		Total	10		

Question	Answer	Marks	$\begin{array}{\|c\|} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
(iii)	Reactivity Ba is more reactive (than Sr) Atomic radius Ba has a greater atomic radius (than Sr) OR Ba has more shells OR Ba has more shielding \checkmark Attraction Nuclear attraction is less in Ba OR (outer) electrons in Ba are less attracted (to nucleus) OR Increased distance / shielding in Ba outweighs increased nuclear charge \checkmark Ionisation energy Ionisation energy of Ba is less OR easier to remove (outer) electrons in $\mathrm{Ba} \checkmark$	4	$\begin{gathered} \text { AO1.1 } \\ \times 4 \end{gathered}$	Comparison required throughout ORA throughout For more shells, ALLOW higher energy level IGNORE more orbitals OR more sub-shells IGNORE 'different shell' or 'new shell' ALLOW Ba has less nuclear pull' OR 'Ba electrons are less tightly held' IGNORE less effective nuclear charge' IGNORE 'nuclear charge' for 'nuclear attraction' ALLOW easier to oxidise Ba
	Total	13		

Quest	stion	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { eleme } \\ \text { nt } \end{gathered}$	Guidance
(b)	0)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Explains the purification steps with most fine detail. AND Calculates correct mass of 2-chloro-2-methylpropane, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Describes some purification steps, with some detail. AND Calculates the mass of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ with some errors. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Describes few purification steps. OR Attempts to calculate the mass of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ with little progress. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 2 \\ \\ \mathrm{AO} 2.7 \\ \times 2 \\ \\ \mathrm{AO} .3 \\ \times 2 \end{gathered}$	Indicative scientific points may include: Main purification stages - Separating funnel to remove organic layer from aqueous layer - Anhydrous salt to dry organic layer - Distillation to purify the product Fine detail - Organic layer is the top layer - Name of a drying agent e.g. anhydrous MgSO_{4} or CaCl_{2} - Collect fraction at $50^{\circ} \mathrm{C}$ IGNORE washing with carbonate/water not in spec. Calculation of mass of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ - $n\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right)=\frac{7.70}{74.0}=0.10405(\mathrm{~mol})$ - expected $n\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right)$ $=0.10405 \times \frac{76}{100}=0.0791(\mathrm{~mol})$ - expected mass $=0.0791 \times 92.5=7.315 \mathrm{~g}$ ALLOW 7.31-7.32 for small slip/rounding Using mass - Theoretical mass $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ $=7.70 \times \frac{92.5}{74.0}=9.625 \mathrm{~g}$ - Mass of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}=9.625 \times \frac{76}{100}=7.315 \mathrm{~g}$

Question		Answer	Marks	AO eleme	Guidance
					NOTE: Incorrect inverse ratio of $\frac{100}{76}$ gives: - $0.10405 \times \frac{76}{100}=0.137(\mathrm{~mol})$ - Mass $=92.5 \times 0.137=12.7 \mathrm{~g}$
(c)	(i)	Butan-2-ol \checkmark	1	A01.2	
	(ii)	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}+\mathrm{H}_{2} \mathrm{O}$ B as reactant: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH} \checkmark$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$ as product \checkmark Correct equation with 2[O] and $\mathrm{H}_{2} \mathrm{O} \checkmark$	3	$\begin{gathered} \mathrm{AO} 2.5 \\ \times 2 \end{gathered}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous If structure of \mathbf{B} is a different primary or secondary alcohol, ALLOW ECF for product and equation
		Total	12		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

